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Abstract

In this study, the generalization of a frictionless contact problem in case of shearing deformation
for an elastic inhomogeneous half space is presented. The basic equations of the elasticity theory
and Fourier transform technique are applied to the problem to derive the system of singular
integral equations. The obtained system of singular integral equations is solved by a quadrature
approach. The numerical results are presented for the case of N = 1, N = 2, N = 3, where N
denotes the number of the punches whose base are flat.
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1 Introduction

In literature, there are many studies of contact problems for an elastic layer. Some of them are
listed below:

Contact problems for inhomogeneous layers in the view of elasticity theory are presented in
[1, 2]. Generalova and Kovalenko examined the effect of a strip shaped punch on a linearly de-
formable foundation in [3]. They used the Chebyshev and Legendre polynomials and quadrature
approximation to obtain the numerical results. Sing et.al. handle the contact problem in which the
nonhomogeneous medium is bounded to another nonhomogeneous medium in [4]. The problem is
reduced to dual integral equations by using Fourier cosine transforms. The numerical results are
obtained by solving the Fredholm integral equations which are obtained from dual integral equa-
tions. Kahya et.al. study frictionless contact problem for a two-layer orthotropic elastic medium
loaded through a rigid flat stamp in [5].

In the present paper, the problem given in [1, 6] is generalized for the case of N -punches. Also,
by using a theorem, the obtained system of integral equation is converted to the system of singular
integral equations. The numerical results are obtained in the view of the index theory given in
[7, 8].

2 Statement of the problem

In this section, the contact problem is defined as in Figure 1. It is assumed the problem is perfectly
bonded to both the coating width H and half-plane substrate. The punches are in contact with
the elastic inhomogeneous coating along y = 0, x ∈

⋃N
i=1(ai, bi), where (ai, bi) ∩ (aj , bj) = ∅, i, j =

1, 2, ..., N and subjected to forces Pi, i = 1, 2, ..., N , which are parallel to axis z and outside of the
punches the surface is traction-free. The i− th punch displaces as εi by the effect of the forces Pi
. Also, when (|x|;−y)→ +∞,the stresses vanish. Shearing module vary with depth is as :
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Figure 1. Schematic diagram of the contact problem for a half-space with an inhomogeneous
coating.

i)G = G(y),−H ≤ y ≤ 0. (2.1)

ii)G = G(−H),−∞ < y < −H.

Boundary conditions;
y = 0, σy = τxy = 0,

τyz = 0, x /∈
N⋃
i=1

(ai, bi),

ω
(1)
i = εi, x ∈ (ai, bi), i = 1, N, (2.2)

where σy, τxy and τyz are normal and shear stress components, ω is the displacement along the axis
z. The continuity conditions on layer substrate interface are given as

y = −H, τ (1)yz = τ (2)yz , ω
(1) = ω(2). (2.3)

While y = 0,

τyz|y=0 = τ(x), τ(x) =

{
τi(x), x ∈

⋃N
i=1(ai, bi),

0, x /∈
⋃N
i=1(ai, bi),

(2.4)

ε =

{
εi, x ∈

⋃N
i=1(ai, bi),

0, x /∈
⋃N
i=1(ai, bi),

(2.5)

Pi =

bi∫
ai

τi(ξ)dξ,

where, i = 1, N .
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3 Reduction to a system of integral equation

In this section, the problem is reduced to a system of integral equation by using the basic equations
of elasticity theory. Equilibrium equation is

∂τxz
∂x

+
∂τyz
∂y

= 0.

In the considered case, the following equations are satisfied:

u = v = 0, ω = ω(x, y), σx = σy = σz = τxy = 0.

Hooke’s law is given as

τxz = G(y)
∂ω

∂x
, τyz = G(y)

∂ω

∂y
. (3.1)

Conjugating displacements and stresses by Hooke’s law leads to

G(y)4ω +G
′
(y)

∂w

∂y
= 0,

where

4 =
∂2

∂x2
+

∂2

∂y2
.

From Eqs. (2.1)-(2.4),

G(y)4ω(1) +G
′
(y)

∂w(1)

∂y
= 0,−H ≤ y ≤ 0, (3.2)

4ω(2) = 0,−∞ < y < −H. (3.3)

Fourier transform of the displacement along the axis z is given as

ω(j)(x, y) =
1

2π

∞∫
−∞

Wj(α, y)e−iαxdα, j = 1, 2, (3.4)

where the case of j = 1 correspond to nonhomogeneous and j = 2 corresponds to homogeneous half
space. By inserting Eq. (3.4) into Eqs. (3.2)-(3.3) and considering the inverse Fourier transform
the system of ordinary differential equations is obtained

G(y)W
′′

1 +G
′
(y)W

′

1 − α2G(y)W1 = 0,−H ≤ y ≤ 0 (3.5)

W
′′

2 − α2W2 = 0,−∞ < y < −H.

The solution of the second equation of Eq. (3.5) is obtained as

W2(α, y) = B1(α)e|α|y +B2(α)e−|α|y.

Since the displacements should be finite when y → −∞ , it should be that B2(α) = 0. So,

W2(α, y) = B1(α)e|α|y. (3.6)
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By considering the continiutiy condition (2.3),

W1(α,−H) = W2(α,−H),W
′

1(α,−H) = W
′

2(α,−H) (3.7)

is obtained. Inserting Eq. (3.6) into (3.7) leads to

W
′

1(α,−H)

W1(α,−H)
= |α|. (3.8)

Expressing the function τ(x) by Fourier transform, it is obtained that

τyz|y=0 = τ(x) =
1

2π

∫ ∞
−∞

T (α)e−iαxdα, (3.9)

where T (α) is the inverse Fourier transform of τ(x) defined by

T (α) =

∫ ∞
−∞

τ(ξ)eiαξdξ. (3.10)

By using the initial condition (2.4) and Hooke’s law (3.1) and also, considering the Fourier transform
expressions (3.4) and (3.9) ,

W
′

1(α, y)|y=0 =
T (α)

G(0)
(3.11)

is obtained. Now, let us define the following auxiliary function;

W ∗1 (α, y) = W1(α, y)G(0)|α|T−1(α). (3.12)

By rearranging Eqs. (3.8) and (3.11) by considering the auxilary function, the following equations
are obtained:

W ∗
′

1 (α,−H)

W ∗1 (α,−H)
= |α|, (3.13)

W ∗
′

1 (α, y)|y=0 = |α|. (3.14)

So, taking into consideration Eq. (3.12) and the first part of the Eq. (3.5), the following ordinary
differential equation is obtained:

G(y)W ∗
′′

1 +G
′
(y)W ∗

′

1 − α2G(y)W ∗1 = 0. (3.15)

By using the condition (2.2), the Fourier transform (3.4), the notation (2.4) and the auxilary
function (3.12), the following equation can be written as

1

2πG(0)

∫ ∞
−∞

W ∗1 (α, 0)T (α)

|α|
e−iαxdα = ε.

To derive the integral equation, the function W ∗1 (α, 0) should be determined from Eq. (3.15) with
the help of Eqs. (3.13) and (3.14). Here, instead of that, to benefit from the method presented in
[9], it is assumed that

z1 = W ∗1 (α, y), z2 = W ∗
′

1 (α, y).
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From the first part of the Eq. (3.5), for G(y) 6= 0, ∀yε(−H, 0) and with the help of Eqs. (3.13)-
(3.14), the following system of differential equation is obtained:

d−→z
dy

= A−→z ,−H ≤ y ≤ 0, (3.16)

z2
z1
|y=−H = |α|, z2|y=0 = |α|,

where,

−→z =

(
z1
z2

)
, A =

(
0 1
α2 −δ(y)

)
and

δ(y) =
G
′
(y)

G(y)
(3.17)

The solution of the system of differential equation is seek with the help of the methodology given
in [9] as

−→z (y) = β1(α)−→a (α, y)e|α|y (3.18)

From Eqs. (3.16)-(3.18), it is obtained that

d−→a
dy

= A−→a − |α|−→a ,−H ≤ y ≤ 0, (3.19)

a1(α,−H) = 1, a2(α,−H) = α, (3.20)

where a1 and a2 are the components of vector −→a . So the function W ∗1 (α, 0) is obtained:

W ∗1 (α, 0) = a1(α, 0)a−12 (α, 0)|α|.

So, Eq. (2.2), (2.4), (2.5) can be arranged as

1

2πG(0)

∫ ∞
−∞

a1(α, 0)

a2(α, 0)
T (α)e−iαxdα = ε. (3.21)

4 A special case of shearing module

In this section, as a special case, the following conditions will be taking into consideration to
constract the kernels of integral equations:

i)G(y) = Geνy,−H ≤ y ≤ 0,

ii)G(y) = Ge−νy,−∞ < y < −H.
where ν is the nonhomogeneity parameter controlling the variation of the shear modulus in the
coating medium.

It is necessary to determine a1(α, 0) and a2(α, 0) to derive the integral equation under these
conditions. To do that, by solving the system of differential equations (3.19)-(3.20) and considering
Eq. (3.17), Eq. (3.21) can be expressed as

1

2πG(0)

∫ ∞
−∞

(ν2 + θ + |α|)e2θH − ν
2 + θ − |α|

((−ν2 + θ)|α|+ α2)e2θH + (ν2 + θ)|α| − α2
T (α)e−iαxdα = ε.
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By using the inverse transform of defined by Eq. (3.10),∫ ∞
−∞

τ(ξ)(

∫ ∞
−∞

L(u)

|u|
e−iu(

x−ξ
H )du)dξ = 2πG(0)ε,

where,

L(u) =
V coshV + (|u|+ µ) sinhV

V coshV + (|u| − µ) sinhV
, αH = u, µ =

νH

2
, V =

√
µ2 + u2.

Since the function L(u) is even with respect to u, the following system of integral equation is
achieved: ∫ ∞

−∞
τ(ξ)K(

ξ − x
H

)dξ = πG(0)ε, (4.1)

where,

K(t) =

∫ ∞
0

L(u)

u
cos(ut)du.

The kernel has the following properties:

Theorem 4.1. The function K(t) defined by

K(t) =

∫ ∞
0

L(u)

u
cos(ut)du.

can be rewritten for ∀tε(−∞,∞) as

K(t) = − ln |t| − F (t),

where,

F (t) =

∫ ∞
0

(1− L(u))cos(ut)− e−u

u
du

[10].

The Eqs. (4.1) can be rewritten by using the equations given in the theorem and (2.5):

−
N∑
j=1

∫ bj

aj

τj(ξ)[ln(
ξ − x
H

) + F (
ξ − x
H

)]dξ = πG(0)εi, xε(ai, bi), i = 1, N

By derivating the system above with respect to x and considering Eq. (4.2)

N∑
j=1

∫ bj

aj

τj(ξ)

ξ − x
dξ +

1

H

N∑
j=1

∫ bj

aj

τj(ξ)M(ξ, x)dξ = πG(0)ε
′

i, xε[ai, bi], i = 1, N

is obtained, where

M(ξ, x) =

∫ ∞
0

(1− L(u))sin(
ξ − x
H

u)du. (4.2)
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Here, only the integral in the first sum of the case of j = i is the Cauchy type singular integral
equation. The other integrals are regular. Let the notations be

ξ = ηj(γ) = rjγ + sj , x = ηi(t) = rit+ si, (4.3)

where,

rj =
bj − aj

2
, sj =

bj + aj
2

.

So, while ξε[aj , bj ] ; then γε[−1, 1]. Similarly, while x = ηi(t) = rit+ siε[ai, bi] ; then tε[−1, 1]. So
the obtained system can be written in the dimensionless form as

N∑
j=1

∫ 1

−1

τj(ηj(γ))

ηj(γ)− ηi(t)
η
′

j(γ)dγ+
1

H

N∑
j=1

∫ 1

−1
τj(ηj(γ))M(ηj(γ), ηi(t))η

′

j(γ)dγ = πG(0)ε
′

i, tε[−1, 1], i = 1, N

∫ 1

−1

τi(ηi(γ))

ηi(γ)− ηi(t)
η
′

i(γ)dγ+

N∑
j=1
j 6=i

∫ 1

−1

τj(ηj(γ))

ηj(γ)− ηi(t)
η
′

j(γ)dγ+
1

H

N∑
j=1

∫ 1

−1
τj(ηj(γ))M(ηj(γ), ηi(t))η

′

j(γ)dγ = πG(0)ε
′

i.

Assuming,

λj =
H

η
′
j(γ)

=
H

rj
, ϕj(γ) =

1

G(0)
τj(ηj(γ)) and δij =

{
1, i = j
0, i 6= j

(4.4)

leads to∫ 1

−1

ϕi(γ)

γ − t
dγ +

N∑
j=1
j 6=i

∫ 1

−1

ϕj(γ)

γ − ri
rj
t+

sj−si
rj

dγ +

N∑
j=1

1

λj

∫ 1

−1
ϕj(γ)M(

γ − ri
rj
t+

sj−si
rj

λj
)dγ = πε

′

i. (4.5)

Let the function K∗ij(γ, t) be

K∗ij(γ, t) =
1

π
[

1− δij
γ − ri

rj
t+

sj−si
rj

+
1

λj
M(

γ − ri
rj
t+

sj−si
rj

λj
)]. (4.6)

By rearranging, the following singular integral equation system is obtained

1

π

∫ 1

−1

ϕi(γ)

γ − t
dγ +

N∑
j=1

∫ 1

−1
K∗ij(γ, t)ϕj(γ)dγ = ε

′

i, i = 1, N. (4.7)

5 A quadrature approach to solution of the system of singular integral
equation

In this section, the solution of the system of singular integral equations (4.7) will be approached by
a quadrature approach given in [8]. It is assumed that the solution has the integrable singularities
at the both ends ±1 . According to index theory given in [7], since κ = 1,the solution is of the form

ϕj(t) = w(t)ϕj(t), w(t) =
1√

1− t2
, j = 1, N, (5.1)
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where ϕj(t) is the bounded function, w(t) is the weight function. Inserting Eq. (5.1) into the system
of singular integral equations (4.7), the following system of singular integral equation is obtained:

1

π

∫ 1

−1

ϕi(γ)

(γ − t)
√

1− γ2
dγ +

N∑
j=1

∫ 1

−1

ϕj(γ)√
1− γ2

K∗ij(γ, t)dγ = ε
′

i. (5.2)

Let us express the function ϕi(γ) by the truncated series as

ϕi(γ) =

p∑
m=0

BimTm(γ), (5.3)

where Tm(γ) are the first kind Chebyshev polynomials of order m. So, in the view of the known
relation [11],

1

π

∫ 1

−1

Tm(γ)

(γ − t)
√

1− γ2
dγ = Um−1(t),m > 0,−1 < t < 1,

n∑
k=1

Tj(γk)

n(γk − tr)
=

{
0, j = 0,

Uj−1(tr), 0 < j < n,
(5.4)

where, Um−1(t) are the second kind Chebyshev polynomials of order m− 1 and

Tn(γk) = 0, γk = cos(
π(2k − 1)

2n
), k = 1, ..., n,

Un−1(tr) = 0, tr = cos(
πr

n
), r = 1, ..., n− 1,

the singular integral in Eq. (5.2) can be rewritten as

1

π

∫ 1

−1

ϕi(γ)

(γ − t)
√

1− γ2
dγ =

p∑
m=0

Bim
1

π

∫ 1

−1

Tm(γ)

(γ − t)
√

1− γ2
dγ =

p∑
m=1

BimUm−1(t).

For t = tr , using the relation (5.3) and (5.4), it is obtained that

1

π

∫ 1

−1

ϕi(γ)

(γ − tr)
√

1− γ2
dγ =

p∑
m=1

BimUm−1(tr) =

n∑
k=1

∑p
m=1BimTm(γk)

n(γk − tr)
=

n∑
k=1

ϕi(γk)

n(γk − tr)
.

So, under the consideration of the case of flat base punches, the system of singular integral equations
(4.5) turns into

n∑
k=1

ϕi(γk)

n(γk − tr)
+

N∑
j=1

n∑
k=1

π

n
ϕj(γk)K∗ij(γk, tr) = 0, (5.5)

where, the second sum of the system (5.5) is obtained by applying the known Gauss-Chebyshev
polynomial given as

1

π

∫ 1

−1

h(t)√
1− t2

dt =

n∑
k=1

h(tk)

n
, Tn(tk) = 0
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to the regular part of Eq. (5.2). As is seen from Eq. (5.5),while the number of the equations is
N(n− 1), the number of unknown is Nn. So the number of missing equations is N . By the index
theory, since κ = 1, there should be additional condition. So as the additional conditions, since
there are N puches the following static conditions are written∫ bj

aj

τj(ξ)dξ = Pj , j = 1, N. (5.6)

By considering the notations (4.3) and transform (4.4), the additional condition (5.6) turn into∫ 1

−1
ϕj(γ)dγ = P ∗j , j = 1, N, (5.7)

where,

P ∗j =
Pj

rjG(0)
.

By applying the same procedure to Eq. (5.7),

n∑
k=1

π

n
ϕj(γk) = P ∗j , j = 1, N (5.8)

is obtained.So, the solution of the considered problem is reduced to find the unknown functions
ϕj(γk) from the linear algebraic systems (5.5) and (5.8).

6 Numerical illustrations

In this section the detailed numerical illustrations are given for the different cases of the punch
number N . It is assumed that every punch is loaded by same forces. In tables, while t∗1, t

∗
2, t
∗
3

denotes the minimum values of the functions τ1, τ2 and τ3 respectively; M1,M2 and M3 denotes
the momentum of the punches.

6.1 Case of N = 1

In this case, it is assumed that there is only one punch which is in contact with the elastic inhomo-
geneous coating. Numerical results are presented below.

Table 1. Numerical results for different values of nonhomogenity parameter ν on the interval
[−1, 1].

ν t∗ τ(t∗) M
0 0 0.318309 0

0.45 0 0.34683 0
1 0 0.407306 0

6.2 Case of N = 2

In this case, it is assumed that there are two punches which are in contact with the elastic inho-
mogeneous coating. It is assumed that the problem is symmetric according to axis y. Numerical
results are presented below.
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Table 2. Numerical results for different values of nonhomogenity parameter ν on the interval
[−2,−1] ∪ [1, 2] .

ν t∗1 τ1(t∗1) t∗2 τ2(t∗2) M1 M2

0 −1.41423 0.63662 1.41423 0.63662 −1.54196 1.54196
0.45 −1.44066 0.67319 1.44066 0.67319 −1.52456 1.52456

1 −1.55831 0.72710 1.58831 0.72710 −1.48441 1.48441

Figure 2. ϕi(x) for the different values of nonhomogeneity parameter.
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6.3 Case of N=3

In this case, it is assumed that there are three punches which are in contact with the elastic
inhomogeneous coating. Numerical results are presented below.

Table 3. Numerical results for different values of nonhomogenity parameter ν on the interval
[−5,−3] ∪ [−1, 1] ∪ [3, 5].

ν t∗1 τ1(t∗1) t∗2 τ2(t∗2) t∗3 τ3(t∗3) M1 M2 M3

0 -3.57362 0.30558 0 0.33842 3.57362 0.30558 -4.19311 0 4.19311
0.45 -3.67993 0.34322 0 0.36101 3.67993 0.34322 -4.11191 0 4.11191

1 -4.66281 0.34592 0 0.40867 4.66281 0.34592 -3.85018 0 3.85018

Table 4. Numerical results for different intervals and nonhomogeneity parameters.
ν [a1, b1] [a2, b2] [a3, b3] t∗1 τ1(t∗1) t∗2 τ2(t∗2) t∗3 τ3(t∗3) M1 M2 M3

0

[-5,-3] [-1,1] [3,5] -3.573 0.305 0 0.338 3.573 0.305 -4.193 0 4.193
[-6,-4] [-1,1] [4,6] -4.676 0.310 0 0.331 4.676 0.310 -5.152 0 5.152
[-7,-5] [-1,1] [5,7] -5.736 0.313 0 0.327 5.736 0.313 -6.126 0 6.126
[-8,-6] [-1,1] [6,8] -6.777 0.314 0 0.324 6.777 0.314 -7.108 0 7.108

0.45

[-5,-3] [-1,1] [3,5] -3.679 0.343 0 0.361 3.679 0.343 -4.111 0 4.111
[-6,-4] [-1,1] [4,6] -4.760 0.344 0 0.355 4.760 0.344 -5.085 0 5.085
[-7,-5] [-1,1] [5,7] -5.807 0.345 0 0.352 5.807 0.345 -5.085 0 5.085
[-8,-6] [-1,1] [6,8] -6.838 0.345 0 0.350 6.838 0.345 -7.057 0 7.057

1

[-5,-3] [-1,1] [3,5] -4.662 0.345 0 0.408 4.662 0.345 -3.850 0 3.850
[-6,-4] [-1,1] [4,6] -5.634 0.354 0 0.404 5.634 0.354 -4.862 0 4.862
[-7,-5] [-1,1] [5,7] -6.605 0.362 0 0.403 6.605 0.362 -5.876 0 5.876
[-8,-6] [-1,1] [6,8] -7.578 0.369 0 0.403 7.578 0.369 -6.889 0 6.889
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Figure 3. ϕi(x) for the different values of nonhomogeneity parameter.
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Figure 4. ϕi(x) for ν = 1 on the different intervals.

7 Conclusion

In this study, the generalization of contact problem in an inhomogeneous half space is studied. The
problem is modelled as system of singular integral equations. So, the obtained system is solved
with the help of Chebyshev polynomials. The numerical results are given in tabular and graphical
form for the cases of N = 1, N = 2, N = 3. The effect of the nonhomogeneity parameter on
pressure distribution is examined. Also, pressure distribution is presented for the different contact
intervals.On the basis of tables and figures, the results can be interpreted as follows:

For the case of N = 1: While the nonhomogeneity parameter increases, the minimum pressure
distribution increases, too. The minimum value t∗ is equal to zero, since the interval is chosen
symmetrically. Also, the momentum of the punch is equal to zero due to the same reason.

For the case of N = 2: When the nonhomogeneity parameter increases, the minimum pressure
distribution on punches increases. The minimum values t∗1 and t∗2 are symmetric, since the interval
is chosen symmetrically. Also, due to the same reason, the momentum values are symmetric.

For the case of N = 3: When the nonhomogeneity parameter increases, the minimum pressure
distribution increases. The minimum values t∗1, t∗3 and the momentums M1 and M3 are symmetric.
The minimum value t∗2 and also the momentum M2 are equal to zero, since the interval is chosen
symmetrically. When the punch 1 and punch 3 go far from the punch 2 preserving the symmetry
and the interval width, the effect of the punch 1 and punch 3 on punch 2 decreases, so the minimum
pressure distribution τ2(t∗2) decreases, too.
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